
Device Memory TCP
Transferring data from/to device memory efficiently

Netdev 0x17, 2023
Mina Almasry, on behalf of Willem de Bruijn, Eric Dumazet, & Kaiyuan Zhang 
almasrymina@google.com



Problem space: Large ML jobs 

• Machine learning jobs that span many nodes.

• Data held on each nodes in GPU memory.

• Jobs requires efficient data transfer between GPUs on different nodes.



Problem space: Node zoom-in

• TCP requires a host memory bounce buffer.

• Consumes memory bandwidth.

• Consumes PCIe bandwidth.



Problem space: PCIe bandwidth utilization

• Data goes from NIC -> root complex (host 

bounce buffers) -> GPU and vice versa.

• Stresses shared PCIe links.

• Google Cloud A3 VMs (8 H100 GPUs)

• Nvidia DGX H100 Systems (8 H100 GPUs)

https://cloud.google.com/blog/products/compute/introducing-a3-supercomputers-with-nvidia-h100-gpus
https://www.nvidia.com/en-us/data-center/dgx-h100/?ncid=pa-srch-goog-560181&_bt=676835775117&_bk=nvidia%20ai&_bm=p&_bn=g&_bg=154931763096&gclid=CjwKCAjwv-2pBhB-EiwAtsQZFFs-Pe691HSE235ZvGXIPCMvLFUTE0SSN3qIdFQojl97RHvhN-lsUBoCkywQAvD_BwE


Proposed solution: Device memory TCP

• Eliminate host memory bounce buffer.

• Transfer data directly to/from device memory.

• Packet payload lands directly into device memory.

• Packet header lands into host memory.

• RFC on the mailing list.

https://lore.kernel.org/netdev/CAHS8izOVJGJH5WF68OsRWFKJid1_huzzUK+hpKbLcL4pSOD1Jw@mail.gmail.com/T/


Journey of an RX packet: Device memory setup.

• Device memory abstraction of choice: dma-buf.

• Standard in-kernel abstraction for device memory.

• Device memory owner is an ‘exporter’.

• Device memory user is an ‘importer’.

• dma-buf APIs handle mapping/unmapping.

• Not struct paged…

• User allocates device memory, obtains a dma-buf handle to the device 

memory.



Journey of an RX packet: NIC setup

• User ‘binds’ RX-queue to dma-buf.

• Netdev netlink APIs

• page_pool handles memory allocation from the dma-buf.

• Configures RSS to steer all other traffic to other queues

• ethtool –X <if> equal 15

• Configures flow steering to steer their traffic to that queue:
• ethtool -N <if> src-ip <ip> dst-ip <ip>... queue 15



Journey of an RX packet: page_pool

• Idea based on Jakub’s memory-provider RFC.

• Enables plugging in ‘memory-providers’ to the page_pool, supporting 

different memory types.

https://lore.kernel.org/netdev/f8270765-a27b-6ccf-33ea-cda097168d79@redhat.com/T/


Journey of an RX packet: page_pool

• Dma-buf memory provider takes care of 

allocating PAGE_SIZE slices from the 

dma-buf and feeding them to the 

page_pool.

• But, dma-buf has no pages… 

page_pool_iovs!



Journey of an RX packet: nonpaged memory support

• page_pool, drivers, and skb_frag_t 

all use page* today.

• So much code churn… LSB pointer trick 

to reduce code churn.

• The LSB on page_pool_iov* is set 

and it’s cast to page*.



Journey of an RX packet: nonpaged memory support

• page_pool does most of the heavy lifting.

• Handles any special casing for page_pool_iov

• Refcounting, dma_addr handling, pp info.

• Page-recycling and others work as-is with page_pool_iov *



Journey of an RX packet: nonpaged memory support

• Drivers must use the page * they receive from page_pool as an 

opaque token.

• They (almost) already do this!

• page_address() is the main issue.



Journey of an RX packet: incoming packet

• NIC splits the packet into header + payload.

• Payload is DMA’d to a page_pool_iov in device memory.

• Enables efficient data transfer.

• Header is DMA’d to a header buffer in host memory.

• Enables the host kernel to parse the packet headers.

• NIC creates a ‘devmem’ skb and sends it up the stack.



Journey of an RX packet: devmem skb support

• Skbs are required to be either all devmem or host memory.

• Devmem skbs are marked with skb->devmem & 

skb_frags_not_readable()

• Results in some quirks:

• Loopback.

• Software checksum calculation.

• TCP dump payload access.



Journey of an RX packet: recvmsg() uapi

• Device memory data can’t be copied to linear buffer or mapped to 

user’s address space.

• We provide ‘pointer’ to the memory in the dma-buf accessible from the 

userspace.



Journey of an RX packet: recvmsg() uapi

• Need the user to give us a signal ‘setsockopt()‘ that they’re done 

with the data. 



Device memory TX path

• Much more straightforward than RX path.

• Dma-buf to send can be passed to sendmsg() API.

• Largely follows the MSG_ZEROCOPY code path.

• Need to create iov_iter that is backed by page_pool_iovs.

• Re-uses the same devmem skb support as RX path.

• skb_frag_dma_map can grab the dma_addr from page_pool_iovs.



Initial results

• ~96% line rate at TCP level: 192 gbps bi-directional per NIC/GPU pair.

• Running in production.

• Transports exercised with production workloads: NCCL.

• Pytorch exercised with production workloads.

• Tensorflow, JAX & others use the same transport primitives.

• ~3X better throughput than regular TCP NCCL transports*.

• Comparable network efficiency to RDMA-based NCCL transports for 

larger message sizes.

https://cloud.google.com/blog/products/compute/introducing-a3-supercomputers-with-nvidia-h100-gpus


Possible follow up work

• io_uring support.

• Dynamic queue management.


